A New Method for Deriving Ocean Surface Specific Humidity and Air Temperature: An Artificial Neural Network Approach
نویسندگان
چکیده
A new methodology for deriving monthly averages of surface specific humidity (Qa) and air temperature (Ta) is described. Two main aspects characterize the new approach. First, remotely sensed parameters, total precipitable water (W), and sea surface temperature (SST) are used to derive Qa and Ta. Second, artificial neural networks (ANN) are employed to find transfer functions relating the input (W, SST) and output (Qa and Ta) parameters. Input data consist of nearly six years (January 1988–November 1993) of monthly averages of total precipitable water from Special Sensor Microwave/Imager data and sea surface temperature analysis from the National Centers for Environmental Prediction. Surface marine observations of Qa and Ta are used to develop and evaluate the new methodology. The performance of the algorithm is measured with surface marine observations not used in the development phase. Higher seasonally dependent discrepancies between Qa and Ta derived from the new method and in situ data are observed in regions such as the Kuroshio and Gulf Stream currents. After removal of systematic biases, the new method indicates that the combination of W and SST as input parameters and the ANN algorithm provides an interesting alternative for deriving monthly averaged surface parameters. The global mean bias in Qa is 0.010 6 0.23 g kg21 over most oceanic areas, whereas root-mean-square (rms) differences are 0.77 6 0.39 g kg21. Likewise, the global mean bias and rms in Ta are on the order of 27.3 3 1025 6 0.278C and 0.72 6 0.388C, respectively.
منابع مشابه
Identifying Flow Units Using an Artificial Neural Network Approach Optimized by the Imperialist Competitive Algorithm
The spatial distribution of petrophysical properties within the reservoirs is one of the most important factors in reservoir characterization. Flow units are the continuous body over a specific reservoir volume within which the geological and petrophysical properties are the same. Accordingly, an accurate prediction of flow units is a major task to achieve a reliable petrophysical description o...
متن کاملArtificial neural network forecast application for fine particulate matter concentration using meteorological data
Most parts of the urban areas are faced with the problem of floating fine particulate matter. Therefore, it is crucial to estimate the amounts of fine particulate matter concentrations through the urban atmosphere. In this research, an artificial neural network technique was utilized to model the PM2.5 dispersion in Tehran City. Factors which are influencing the predicted value consi...
متن کاملPredicting the Hydrate Formation Temperature by a New Correlation and Neural Network
Gas hydrates are a costly problem when they plug oil and gas pipelines. The best way to determine the HFT and pressure is to measure these conditions experimentally for every gas system. Since this is not practical in terms of time and money, correlations are the other alternative tools. There are a small number of correlations for specific gravity method to predict the hydrate formation. As th...
متن کاملGroundwater level simulation using artificial neural network: a case study from Aghili plain, urban area of Gotvand, south-west Iran
In this paper, the Artificial Neural Network (ANN) approach is applied for forecasting groundwater level fluctuation in Aghili plain,southwest Iran. An optimal design is completed for the two hidden layers with four different algorithms: gradient descent withmomentum (GDM), levenberg marquardt (LM), resilient back propagation (RP), and scaled conjugate gradient (SCG). Rain,evaporation, relative...
متن کاملPrediction of monthly rainfall using artificial neural network mixture approach, Case Study: Torbat-e Heydariyeh
Rainfall is one of the most important elements of water cycle used in evaluating climate conditions of each region. Long-term forecast of rainfall for arid and semi-arid regions is very important for managing and planning of water resources. To forecast appropriately, accurate data regarding humidity, temperature, pressure, wind speed etc. is required.This article is analytical and its database...
متن کامل